Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Niche width of above- and below-ground organisms varied in predicting biodiversity profiling along a latitudinal gradient.

Identifieur interne : 000016 ( Main/Exploration ); précédent : 000015; suivant : 000017

Niche width of above- and below-ground organisms varied in predicting biodiversity profiling along a latitudinal gradient.

Auteurs : Kai Feng [République populaire de Chine] ; Shang Wang [République populaire de Chine] ; Ziyan Wei [République populaire de Chine] ; Zhujun Wang [République populaire de Chine] ; Zhaojing Zhang [République populaire de Chine] ; Yueni Wu [République populaire de Chine] ; Yuguang Zhang [République populaire de Chine] ; Ye Deng [République populaire de Chine]

Source :

RBID : pubmed:32299139

Abstract

Biodiversity is the foundation of all ecosystems across the planet, and having a better understanding of its global distribution mechanism could be important for biodiversity conservation under global change. A niche width model, combined with metabolic theory, has successfully predicted the increase of α-diversity and decrease of β-diversity in the below-ground microbial community along an altitudinal mountain gradient. In this study, we evaluated this niche width model of above-ground plants (mainly trees and shrubs) and below-ground bulk soil microbial communities (i.e., bacteria and archaea) along a latitudinal gradient of forests in China. The niche widths of both plants and microbes increased with increasing temperature and precipitation, and with proximity to circumneutral pH. However, the α- and β-diversities (observed richness and Bray-Curtis dissimilarity, respectively) could not be accurately predicted by a single niche width model alone, either temperature, precipitation or pH. Considering the interactions among different niche width models, all three niche width models were combined to predict biodiversity at the community level using structural equation modelling. The results showed that the niche width model of circumneutral pH was most important in predicting diversity profiling (i.e., α- and β-diversity) for both plants and microbes, while niche width of precipitation and temperature showed both direct and indirect importance for microbe and plant biodiversity, respectively. Because the current niche width model neglects several scenarios related to taxon and environmental attributes, it still needs to be treated with caution in predicting biodiversity trends.

DOI: 10.1111/mec.15441
PubMed: 32299139


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Niche width of above- and below-ground organisms varied in predicting biodiversity profiling along a latitudinal gradient.</title>
<author>
<name sortKey="Feng, Kai" sort="Feng, Kai" uniqKey="Feng K" first="Kai" last="Feng">Kai Feng</name>
<affiliation wicri:level="3">
<nlm:affiliation>CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Resources and Environment, University of Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Shang" sort="Wang, Shang" uniqKey="Wang S" first="Shang" last="Wang">Shang Wang</name>
<affiliation wicri:level="3">
<nlm:affiliation>CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wei, Ziyan" sort="Wei, Ziyan" uniqKey="Wei Z" first="Ziyan" last="Wei">Ziyan Wei</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute for Marine Science and Technology, Shandong University, Qingdao, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute for Marine Science and Technology, Shandong University, Qingdao</wicri:regionArea>
<wicri:noRegion>Qingdao</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Zhujun" sort="Wang, Zhujun" uniqKey="Wang Z" first="Zhujun" last="Wang">Zhujun Wang</name>
<affiliation wicri:level="3">
<nlm:affiliation>CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Resources and Environment, University of Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Zhaojing" sort="Zhang, Zhaojing" uniqKey="Zhang Z" first="Zhaojing" last="Zhang">Zhaojing Zhang</name>
<affiliation wicri:level="3">
<nlm:affiliation>CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Institute for Marine Science and Technology, Shandong University, Qingdao, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute for Marine Science and Technology, Shandong University, Qingdao</wicri:regionArea>
<wicri:noRegion>Qingdao</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wu, Yueni" sort="Wu, Yueni" uniqKey="Wu Y" first="Yueni" last="Wu">Yueni Wu</name>
<affiliation wicri:level="3">
<nlm:affiliation>CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Resources and Environment, University of Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Yuguang" sort="Zhang, Yuguang" uniqKey="Zhang Y" first="Yuguang" last="Zhang">Yuguang Zhang</name>
<affiliation wicri:level="3">
<nlm:affiliation>The Key Laboratory of Forest Ecology and Environment of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Key Laboratory of Forest Ecology and Environment of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Deng, Ye" sort="Deng, Ye" uniqKey="Deng Y" first="Ye" last="Deng">Ye Deng</name>
<affiliation wicri:level="3">
<nlm:affiliation>CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Resources and Environment, University of Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Institute for Marine Science and Technology, Shandong University, Qingdao, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute for Marine Science and Technology, Shandong University, Qingdao</wicri:regionArea>
<wicri:noRegion>Qingdao</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32299139</idno>
<idno type="pmid">32299139</idno>
<idno type="doi">10.1111/mec.15441</idno>
<idno type="wicri:Area/Main/Corpus">000030</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000030</idno>
<idno type="wicri:Area/Main/Curation">000030</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000030</idno>
<idno type="wicri:Area/Main/Exploration">000030</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Niche width of above- and below-ground organisms varied in predicting biodiversity profiling along a latitudinal gradient.</title>
<author>
<name sortKey="Feng, Kai" sort="Feng, Kai" uniqKey="Feng K" first="Kai" last="Feng">Kai Feng</name>
<affiliation wicri:level="3">
<nlm:affiliation>CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Resources and Environment, University of Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Shang" sort="Wang, Shang" uniqKey="Wang S" first="Shang" last="Wang">Shang Wang</name>
<affiliation wicri:level="3">
<nlm:affiliation>CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wei, Ziyan" sort="Wei, Ziyan" uniqKey="Wei Z" first="Ziyan" last="Wei">Ziyan Wei</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute for Marine Science and Technology, Shandong University, Qingdao, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute for Marine Science and Technology, Shandong University, Qingdao</wicri:regionArea>
<wicri:noRegion>Qingdao</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Zhujun" sort="Wang, Zhujun" uniqKey="Wang Z" first="Zhujun" last="Wang">Zhujun Wang</name>
<affiliation wicri:level="3">
<nlm:affiliation>CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Resources and Environment, University of Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Zhaojing" sort="Zhang, Zhaojing" uniqKey="Zhang Z" first="Zhaojing" last="Zhang">Zhaojing Zhang</name>
<affiliation wicri:level="3">
<nlm:affiliation>CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Institute for Marine Science and Technology, Shandong University, Qingdao, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute for Marine Science and Technology, Shandong University, Qingdao</wicri:regionArea>
<wicri:noRegion>Qingdao</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wu, Yueni" sort="Wu, Yueni" uniqKey="Wu Y" first="Yueni" last="Wu">Yueni Wu</name>
<affiliation wicri:level="3">
<nlm:affiliation>CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Resources and Environment, University of Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Yuguang" sort="Zhang, Yuguang" uniqKey="Zhang Y" first="Yuguang" last="Zhang">Yuguang Zhang</name>
<affiliation wicri:level="3">
<nlm:affiliation>The Key Laboratory of Forest Ecology and Environment of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Key Laboratory of Forest Ecology and Environment of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Deng, Ye" sort="Deng, Ye" uniqKey="Deng Y" first="Ye" last="Deng">Ye Deng</name>
<affiliation wicri:level="3">
<nlm:affiliation>CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Resources and Environment, University of Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Institute for Marine Science and Technology, Shandong University, Qingdao, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute for Marine Science and Technology, Shandong University, Qingdao</wicri:regionArea>
<wicri:noRegion>Qingdao</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular ecology</title>
<idno type="eISSN">1365-294X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Biodiversity is the foundation of all ecosystems across the planet, and having a better understanding of its global distribution mechanism could be important for biodiversity conservation under global change. A niche width model, combined with metabolic theory, has successfully predicted the increase of α-diversity and decrease of β-diversity in the below-ground microbial community along an altitudinal mountain gradient. In this study, we evaluated this niche width model of above-ground plants (mainly trees and shrubs) and below-ground bulk soil microbial communities (i.e., bacteria and archaea) along a latitudinal gradient of forests in China. The niche widths of both plants and microbes increased with increasing temperature and precipitation, and with proximity to circumneutral pH. However, the α- and β-diversities (observed richness and Bray-Curtis dissimilarity, respectively) could not be accurately predicted by a single niche width model alone, either temperature, precipitation or pH. Considering the interactions among different niche width models, all three niche width models were combined to predict biodiversity at the community level using structural equation modelling. The results showed that the niche width model of circumneutral pH was most important in predicting diversity profiling (i.e., α- and β-diversity) for both plants and microbes, while niche width of precipitation and temperature showed both direct and indirect importance for microbe and plant biodiversity, respectively. Because the current niche width model neglects several scenarios related to taxon and environmental attributes, it still needs to be treated with caution in predicting biodiversity trends.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32299139</PMID>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>26</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-294X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>29</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2020</Year>
<Month>05</Month>
</PubDate>
</JournalIssue>
<Title>Molecular ecology</Title>
<ISOAbbreviation>Mol Ecol</ISOAbbreviation>
</Journal>
<ArticleTitle>Niche width of above- and below-ground organisms varied in predicting biodiversity profiling along a latitudinal gradient.</ArticleTitle>
<Pagination>
<MedlinePgn>1890-1902</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/mec.15441</ELocationID>
<Abstract>
<AbstractText>Biodiversity is the foundation of all ecosystems across the planet, and having a better understanding of its global distribution mechanism could be important for biodiversity conservation under global change. A niche width model, combined with metabolic theory, has successfully predicted the increase of α-diversity and decrease of β-diversity in the below-ground microbial community along an altitudinal mountain gradient. In this study, we evaluated this niche width model of above-ground plants (mainly trees and shrubs) and below-ground bulk soil microbial communities (i.e., bacteria and archaea) along a latitudinal gradient of forests in China. The niche widths of both plants and microbes increased with increasing temperature and precipitation, and with proximity to circumneutral pH. However, the α- and β-diversities (observed richness and Bray-Curtis dissimilarity, respectively) could not be accurately predicted by a single niche width model alone, either temperature, precipitation or pH. Considering the interactions among different niche width models, all three niche width models were combined to predict biodiversity at the community level using structural equation modelling. The results showed that the niche width model of circumneutral pH was most important in predicting diversity profiling (i.e., α- and β-diversity) for both plants and microbes, while niche width of precipitation and temperature showed both direct and indirect importance for microbe and plant biodiversity, respectively. Because the current niche width model neglects several scenarios related to taxon and environmental attributes, it still needs to be treated with caution in predicting biodiversity trends.</AbstractText>
<CopyrightInformation>© 2020 John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Feng</LastName>
<ForeName>Kai</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Shang</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wei</LastName>
<ForeName>Ziyan</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Institute for Marine Science and Technology, Shandong University, Qingdao, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Zhujun</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Zhaojing</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute for Marine Science and Technology, Shandong University, Qingdao, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Yueni</ForeName>
<Initials>Y</Initials>
<Identifier Source="ORCID">0000-0002-2087-2952</Identifier>
<AffiliationInfo>
<Affiliation>CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Yuguang</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>The Key Laboratory of Forest Ecology and Environment of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Deng</LastName>
<ForeName>Ye</ForeName>
<Initials>Y</Initials>
<Identifier Source="ORCID">0000-0002-7584-0632</Identifier>
<AffiliationInfo>
<Affiliation>CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute for Marine Science and Technology, Shandong University, Qingdao, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>05</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Mol Ecol</MedlineTA>
<NlmUniqueID>9214478</NlmUniqueID>
<ISSNLinking>0962-1083</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">above- and below-ground ecology</Keyword>
<Keyword MajorTopicYN="Y">biodiversity profiling</Keyword>
<Keyword MajorTopicYN="Y">biogeographical distribution</Keyword>
<Keyword MajorTopicYN="Y">forest ecosystem</Keyword>
<Keyword MajorTopicYN="Y">niche width model</Keyword>
<Keyword MajorTopicYN="Y">plants and microbes</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>06</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>04</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>04</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>4</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>4</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32299139</ArticleId>
<ArticleId IdType="doi">10.1111/mec.15441</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Albrecht, J., Classen, A., Vollstädt, M. G. R., Mayr, A., Mollel, N. P., Schellenberger Costa, D., … Schleuning, M. (2018). Plant and animal functional diversity drive mutualistic network assembly across an elevational gradient. Nature Communications, 9, 3177. https://doi.org/10.1038/s41467-018-05610-w</Citation>
</Reference>
<Reference>
<Citation>Bahram, M., Hildebrand, F., Forslund, S. K., Anderson, J. L., Soudzilovskaia, N. A., Bodegom, P. M., … Bork, P. (2018). Structure and function of the global topsoil microbiome. Nature, 560, 233-237. https://doi.org/10.1038/s41586-018-0386-6</Citation>
</Reference>
<Reference>
<Citation>Brown, J. H. (2014). Why are there so many species in the tropics? Journal of Biogeography, 41, 8-22. https://doi.org/10.1111/jbi.12228</Citation>
</Reference>
<Reference>
<Citation>Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. (2004). Toward a metabolic theory of ecology. Ecology, 85, 1771-1789. https://doi.org/10.1890/03-9000</Citation>
</Reference>
<Reference>
<Citation>Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A., Turnbaugh, P. J., … Knight, R. (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of the United States of America, 108(Suppl 1), 4516-4522. https://doi.org/10.1073/pnas.1000080107</Citation>
</Reference>
<Reference>
<Citation>Chase, J. M. (2007). Drought mediates the importance of stochastic community assembly. Proceedings of the National Academy of Sciences of the United States of America, 104, 17430-17434. https://doi.org/10.1073/pnas.0704350104</Citation>
</Reference>
<Reference>
<Citation>Chu, C., Lutz, J. A., Král, K., Vrška, T., Yin, X., Myers, J. A., … He, F. (2019). Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees. Ecology Letters, 22, 245-255. https://doi.org/10.1111/ele.13175</Citation>
</Reference>
<Reference>
<Citation>Cleveland, W. S., & Loader, C. (1996). Smoothing by local regression: Principles and methods. In W. Härdle, & M. Schimek (Eds.), Statistical theory and computational aspects of smoothing (pp. 10-49). Heidelberg, Germany: PhysicaVerlag.</Citation>
</Reference>
<Reference>
<Citation>Cong, J., Liu, X., Lu, H., Xu, H., Li, Y., Deng, Y. E., … Zhang, Y. (2015). Available nitrogen is the key factor influencing soil microbial functional gene diversity in tropical rainforest. BMC Microbiology, 15, 167. https://doi.org/10.1186/s12866-015-0491-8</Citation>
</Reference>
<Reference>
<Citation>Dallas, T., Decker, R. R., & Hastings, A. (2017). Species are not most abundant in the centre of their geographic range or climatic niche. Ecology Letters, 20, 1526-1533. https://doi.org/10.1111/ele.12860</Citation>
</Reference>
<Reference>
<Citation>Delgado-Baquerizo, M., Maestre, F. T., Reich, P. B., Jeffries, T. C., Gaitan, J. J., Encinar, D., … Singh, B. K. (2016). Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 7, 10541. https://doi.org/10.1038/ncomms10541</Citation>
</Reference>
<Reference>
<Citation>Delgado-Baquerizo, M., Oliverio, A. M., Brewer, T. E., Benavent-González, A., Eldridge, D. J., Bardgett, R. D., … Fierer, N. (2018). A global atlas of the dominant bacteria found in soil. Science, 359, 320-325. https://doi.org/10.1126/science.aap9516</Citation>
</Reference>
<Reference>
<Citation>Delgado-Baquerizo, M., Reich, P. B., Khachane, A. N., Campbell, C. D., Thomas, N., Freitag, T. E., … Singh, B. K. (2017). It is elemental: Soil nutrient stoichiometry drives bacterial diversity. Environmental Microbiology, 19, 1176-1188. https://doi.org/10.1111/1462-2920.13642</Citation>
</Reference>
<Reference>
<Citation>Deng, Y. E., Ning, D., Qin, Y., Xue, K., Wu, L., He, Z., … Zhou, J. (2018). Spatial scaling of forest soil microbial communities across a temperature gradient. Environmental Microbiology, 20, 3504-3513. https://doi.org/10.1111/1462-2920.14303</Citation>
</Reference>
<Reference>
<Citation>Faust, K., & Raes, J. (2012). Microbial interactions: From networks to models. Nature Reviews Microbiology, 10, 538-550. https://doi.org/10.1038/Nrmicro2832</Citation>
</Reference>
<Reference>
<Citation>Feng, K., Zhang, Z., Cai, W., Liu, W., Xu, M., Yin, H., … Deng, Y. E. (2017). Biodiversity and species competition regulate the resilience of microbial biofilm community. Molecular Ecology, 26, 6170-6182. https://doi.org/10.1111/mec.14356</Citation>
</Reference>
<Reference>
<Citation>Fierer, N. (2017). Embracing the unknown: Disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 15, 579-590. https://doi.org/10.1038/nrmicro.2017.87</Citation>
</Reference>
<Reference>
<Citation>Godoy, O., Bartomeus, I., Rohr, R. P., & Saavedra, S. (2018). Towards the integration of niche and network theories. Trends in Ecology & Evolution, 33, 287-300. https://doi.org/10.1016/j.tree.2018.01.007</Citation>
</Reference>
<Reference>
<Citation>Guo, X., Feng, J., Shi, Z., Zhou, X., Yuan, M., Tao, X., … Zhou, J. (2018). Climate warming leads to divergent succession of grassland microbial communities. Nature Climate Change, 8, 813-818. https://doi.org/10.1038/s41558-018-0254-2</Citation>
</Reference>
<Reference>
<Citation>Hutchinson, G. E. (1957). Population studies - animal ecology and demography - concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415-427. https://doi.org/10.1101/Sqb.1957.022.01.039</Citation>
</Reference>
<Reference>
<Citation>Lauber, C. L., Hamady, M., Knight, R., & Fierer, N. (2009). Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 75, 5111-5120. https://doi.org/10.1128/Aem.00335-09</Citation>
</Reference>
<Reference>
<Citation>Llado, S., Lopez-Mondejar, R., & Baldrian, P. (2017). Forest soil bacteria: Diversity, involvement in ecosystem processes, and response to global change. Microbiology and Molecular Biology Reviews, 81, e00063-16. https://doi.org/10.1128/MMBR.00063-16</Citation>
</Reference>
<Reference>
<Citation>Lynch, M., & Gabriel, W. (1987). Environmental tolerance. The American Naturalist, 129, 283-303. https://doi.org/10.1086/284635</Citation>
</Reference>
<Reference>
<Citation>Okie, J. G., Van Horn, D. J., Storch, D., Barrett, J. E., Gooseff, M. N., Kopsova, L., & Takacs-Vesbach, C. D. (2015). Niche and metabolic principles explain patterns of diversity and distribution: Theory and a case study with soil bacterial communities. Proceedings of the Royal Society B-Biological Sciences, 282, 20142630. https://doi.org/10.1098/rspb.2014.2630</Citation>
</Reference>
<Reference>
<Citation>Peters, M. K., Hemp, A., Appelhans, T., Behler, C., Classen, A., Detsch, F., … Steffan-Dewenter, I. (2016). Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nature Communications, 7, 13736. https://doi.org/10.1038/ncomms13736</Citation>
</Reference>
<Reference>
<Citation>Ramette, A. (2007). Multivariate analyses in microbial ecology. FEMS Microbiology Ecology, 62, 142-160. https://doi.org/10.1111/j.1574-6941.2007.00375.x</Citation>
</Reference>
<Reference>
<Citation>Ratcliffe, S., Wirth, C., Jucker, T., van der Plas, F., Scherer-Lorenzen, M., Verheyen, K., … Baeten, L. (2017). Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecology Letters, 20, 1414-1426. https://doi.org/10.1111/ele.12849</Citation>
</Reference>
<Reference>
<Citation>Rice, A., Šmarda, P., Novosolov, M., Drori, M., Glick, L., Sabath, N., … Mayrose, I. (2019). The global biogeography of polyploid plants. Nature Ecology & Evolution, 3, 265-273. https://doi.org/10.1038/s41559-018-0787-9</Citation>
</Reference>
<Reference>
<Citation>Schellenberger Costa, D., Gerschlauer, F., Kiese, R., Fischer, M., Kleyer, M., & Hemp, A. (2018). Plant niche breadths along environmental gradients and their relationship to plant functional traits. Diversity and Distributions, 24, 1869-1882. https://doi.org/10.1111/ddi.12815</Citation>
</Reference>
<Reference>
<Citation>Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of Psychological Research Online, 8, 23-74.</Citation>
</Reference>
<Reference>
<Citation>Sexton, J. P., Montiel, J., Shay, J. E., Stephens, M. R., & Slatyer, R. A. (2017). Evolution of ecological niche breadth. Annual Review of Ecology, Evolution, and Systematics, 48(48), 183-206. https://doi.org/10.1146/annurev-ecolsys-110316-023003</Citation>
</Reference>
<Reference>
<Citation>Terbraak, C. J. F., & Verdonschot, P. F. M. (1995). Canonical correspondence-analysis and related multivariate methods in aquatic ecology. Aquatic Sciences, 57, 255-289. https://doi.org/10.1007/Bf00877430</Citation>
</Reference>
<Reference>
<Citation>Toledo, M., Poorter, L., Peña-Claros, M., Alarcón, A., Balcázar, J., Leaño, C., … Bongers, F. (2011). Climate is a stronger driver of tree and forest growth rates than soil and disturbance. Journal of Ecology, 99, 254-264. https://doi.org/10.1111/j.1365-2745.2010.01741.x</Citation>
</Reference>
<Reference>
<Citation>Tripathi, B. M., Stegen, J. C., Kim, M., Dong, K., Adams, J. M., & Lee, Y. K. (2018). Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. ISME Journal, 12, 1072-1083. https://doi.org/10.1038/s41396-018-0082-4</Citation>
</Reference>
<Reference>
<Citation>Waldock, C., Stuart-Smith, R. D., Edgar, G. J., Bird, T. J., & Bates, A. E. (2019). The shape of abundance distributions across temperature gradients in reef fishes. Ecology Letters, 22, 685-696. https://doi.org/10.1111/ele.13222</Citation>
</Reference>
<Reference>
<Citation>Wu, B., Liu, F., Weiser, M. D., Ning, D., Okie, J. G., Shen, L., … He, Z. (2018). Temperature determines the diversity and structure of N2O-reducing microbial assemblages. Functional Ecology, 32, 1-12. https://doi.org/10.1111/1365-2435.13091</Citation>
</Reference>
<Reference>
<Citation>Xing, D. L., & He, F. L. (2019). Environmental filtering explains a U-shape latitudinal pattern in regional beta-deviation for eastern North American trees. Ecology Letters, 22, 284-291. https://doi.org/10.1111/ele.13188</Citation>
</Reference>
<Reference>
<Citation>Zeppel, M. J. B., Wilks, J. V., & Lewis, J. D. (2014). Impacts of extreme precipitation and seasonal changes in precipitation on plants. Biogeosciences, 11, 3083-3093. https://doi.org/10.5194/bg-11-3083-2014</Citation>
</Reference>
<Reference>
<Citation>Zhang, Y., Cong, J., Lu, H., Deng, Y., Liu, X., Zhou, J., & Li, D. (2016). Soil bacterial endemism and potential functional redundancy in natural broadleaf forest along a latitudinal gradient. Scientific Reports, 6, 28819. https://doi.org/10.1038/srep28819</Citation>
</Reference>
<Reference>
<Citation>Zhang, Z., Deng, Y. E., Feng, K., Cai, W., Li, S., Yin, H., … Qu, Y. (2019). Deterministic assembly and diversity gradient altered the biofilm community performances of bioreactors. Environmental Science & Technology, 53, 1315-1324. https://doi.org/10.1021/acs.est.8b06044</Citation>
</Reference>
<Reference>
<Citation>Zhou, J., Deng, Y. E., Shen, L., Wen, C., Yan, Q., Ning, D., … Brown, J. H. (2016). Temperature mediates continental-scale diversity of microbes in forest soils. Nature Communications, 7, 12083. https://doi.org/10.1038/ncomms12083</Citation>
</Reference>
<Reference>
<Citation>Zhou, J. Z., & Ning, D. L. (2017). Stochastic community assembly: Does it matter in microbial ecology? Microbiology and Molecular Biology Reviews, 81, e00002-17. https://doi.org/10.1128/MMBR.00002-17</Citation>
</Reference>
<Reference>
<Citation>Žifčáková, L., Štursová, M., Baldrian, P., Leigh, M. B., & Burgess, R. (2012). Cellulose utilization in forest litter and soil: Identification of bacterial and fungal decomposers. FEMS Microbiology Ecology, 80, 735-746. https://doi.org/10.1111/j.1574-6941.2012.01343.x</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Feng, Kai" sort="Feng, Kai" uniqKey="Feng K" first="Kai" last="Feng">Kai Feng</name>
</noRegion>
<name sortKey="Deng, Ye" sort="Deng, Ye" uniqKey="Deng Y" first="Ye" last="Deng">Ye Deng</name>
<name sortKey="Deng, Ye" sort="Deng, Ye" uniqKey="Deng Y" first="Ye" last="Deng">Ye Deng</name>
<name sortKey="Deng, Ye" sort="Deng, Ye" uniqKey="Deng Y" first="Ye" last="Deng">Ye Deng</name>
<name sortKey="Feng, Kai" sort="Feng, Kai" uniqKey="Feng K" first="Kai" last="Feng">Kai Feng</name>
<name sortKey="Wang, Shang" sort="Wang, Shang" uniqKey="Wang S" first="Shang" last="Wang">Shang Wang</name>
<name sortKey="Wang, Zhujun" sort="Wang, Zhujun" uniqKey="Wang Z" first="Zhujun" last="Wang">Zhujun Wang</name>
<name sortKey="Wang, Zhujun" sort="Wang, Zhujun" uniqKey="Wang Z" first="Zhujun" last="Wang">Zhujun Wang</name>
<name sortKey="Wei, Ziyan" sort="Wei, Ziyan" uniqKey="Wei Z" first="Ziyan" last="Wei">Ziyan Wei</name>
<name sortKey="Wu, Yueni" sort="Wu, Yueni" uniqKey="Wu Y" first="Yueni" last="Wu">Yueni Wu</name>
<name sortKey="Wu, Yueni" sort="Wu, Yueni" uniqKey="Wu Y" first="Yueni" last="Wu">Yueni Wu</name>
<name sortKey="Zhang, Yuguang" sort="Zhang, Yuguang" uniqKey="Zhang Y" first="Yuguang" last="Zhang">Yuguang Zhang</name>
<name sortKey="Zhang, Zhaojing" sort="Zhang, Zhaojing" uniqKey="Zhang Z" first="Zhaojing" last="Zhang">Zhaojing Zhang</name>
<name sortKey="Zhang, Zhaojing" sort="Zhang, Zhaojing" uniqKey="Zhang Z" first="Zhaojing" last="Zhang">Zhaojing Zhang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000016 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000016 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32299139
   |texte=   Niche width of above- and below-ground organisms varied in predicting biodiversity profiling along a latitudinal gradient.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32299139" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020